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The Electromagnetic Field of an Insulated
Antenna in a Conducting or

Dielectric Medium

RONOLD W. P. KING, LIFE FELLOW, IEEE, B. S. TREMBLY, MEMBER, IEEE, AND

J. W. STROHBEHN, SENIOR MEMBER, IEEE

Mrsfract —Insulated antennas are useful for locafiied heating as in the

hyperthermia treatment of tumors and the extraction of shale oil. The

distribution of current in and the admittance of a center-driven di@e

embedded in a general medinm are reviewed. Formulas for the electric field

generated by the cnrrents in the dipole are derived for afl points outside the

antenna. Near the antenna, the field is elliptically polarized. Formnfas for

the polarization ellipses are derived and evaluated for antennas with

electrical half-lengths /3L h = 7r/4, m/2, ~, and 3m/2, where k~ = BL + ia~

is the wavennmber of the current, and this is different from the wavenum-

ber of the ambient medium.

I. INTRODUCTION

T HE INSULATED DIPOLE and monopole are useful

not only in subsurface communication but also in

localized heating. This is accomplished by the embedding

of a suitably designed insulated antenna [ 1] into the material

to be heated. One such application-which is of primary

interest to the authors of this paper—is the insertion of an

insulated antenna into a tumor to produce local hyperther-

mia in conjunction with radiation therapy [2], [3]. This

application requires antennas of very small size operated at

a very high frequency. A theoretically similar but practi-

cally very different use of insulated antennas for localized

heating is in the extraction of shale oil. For this purpose,

very large insulated antennas are inserted into boreholes in

the shale and heated at an appropriate much lower

frequency. In both applications, interest is primarily in the

field quite close to the antenna where most of the heating

takes place. The near electric field of a bare or insulated

dipole in a medium like muscle or the earth is much more

involved than the far field because it is elliptically polarized.

Simple expressions in closed form are not available. The

determination of the field of an insulated dipole is further

complicated by the fact that the wavenumber for the
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Fig. 1. Insulated dipole in ambient medium.

current in the antenna is complex and different from the

wavenumber of the surrounding medium.

II. THE PROPERTIES OF THE lNSULATED DIPOLE

An insulated dipole (Fig. 1) consists of a central conduc-

tor (Region 1) with the half-length h and radius a sur-

rounded by a cylinder of dielectric which may consist of

one or two layers (Regions 2 and 3), respectively, with the

outer radii b and c. Outside this insulating sheath is the

infinite ambient medium (Region 4) which may be con-

ducting or dielectric. The central conductor is sufficient-

ly highly conducting to be well approximated by a per-
fect conductor. The wavenumbers of the dielectric layers

are kz = W(pOCz)’/2 and kq = u(pOcq)1i2, where E2 and

C3are taken to be real since the dielectrics actually used are

highly nonconducting. The wavenumber of the conducting

or dielectric ambient medium is kq = ~d + i ad = o (po{A ) 1/2,
<q = cd + i04/ti.

The general theory of the insulated antenna applies
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when the wavenumber of the ambient medium is large

compared to that of the insulating sheath and the cross

section of the antenna is electrically small. That is

lkq/k212z=l; lkJkJ2>>l; (kzb)*-=sl; (k~c)z -d.

(1)

Subject to these conditions and with the time dependence

e‘i’’”, the current in the central conductor is [1], [4]-[6]

sink~(h–lz])
l(z) = 1(0) sin kLh

1(0) = V;YO = v:/zo (2a)

where the admittance is

YO= – (i/2 ZC)tank~h. (2b)

For a dielectric with two layers

k~ = kz
[

in (c/a)

1[ 11’2ln(c/a) + F 1’2

ln(b/a)+n~31n(c/b) ln(c/a)+n~dF

(3)

2== (~pOk~/2rk~)[ln (b/a)

+ n&ln(c/b)+ n&F] (4)

where n~3 = k~/k~, n~~= k~/k~, and F = H#J(kqc)/
k4cH(1J(k4c). These formulas can be simplified by the

introduction of an effective wavenumber k2e and an effec-

tive permittivity c~, for an equivalent dielectric composed

of a single layer with the outer radius c, viz.,

[

in (c/a)

I

1/2

k2e = kz
ln(b/a)+n~31n(c/b)

[

in ( c/a)
C.’e= C2

1ln(b/a)+n~qln(c/b) “
(5)

With (5), the above formulas become

k~ = k2, [ln(c/a)+ F]112[ln(c/a)+ n~dF] ‘1’2 (6)

ZC= (upOk~/2rk~,)[ln (c/a)+ n~.qF] (7)

where n~eq= k~e/k~. The charge per unit length associ-

ated with the current is

i 131(z) V;kL cosk~(h–z)~(zj=– ZT=—
2LOZC COS k~h ‘

O<z<h (8)

q(–z)=– q(z). (9)

Since the field outside the insulator can be calculated as
accurately and more simply with the equivalent single

layer, this will be used. The cylindrical components of the

electromagnetic field in the effective single-layer insulator,

a < r < c, with permittivity cz, and wavenumber k2e are

approximated by

PO~(Z) W(o) sink~(h –IzI)
B2+(r, z)-—=—

2~r 2wr sin k~ h ‘

–h<z<h (10)

q(z)
~2r(@-~=

ik~l(0) cos k~(h – z)

2vc2,ra sin k~h ‘

O<z<h (Ila)

= _ ik~I(0) cosk~(h + z)

2mzerti sin k~h ‘

–h<z<O. (llb)

A somewhat less accurate but adequate value of the small

axial component of the electric field is obtained from one

of Maxwell’s equations by differentiation and integration.

Thus

~ dE2, (r, z)
E,z(r, z)-J [ az 1–idJ2@(r, z) dr

= _ iq.LoI(o)

2n
()

ln(r/a) 1–$
2e

. sinkL(h –Izl)

sin k~h “
(12)

III. THE ELECTRIC FIELD MAINTAINED BY THE

ANTENNA

The electric field outside the antenna in Region 4 is

given by [5, p. 523, eq. (7.12)]

-E,, (C, Z’)jx V’+’(z, Z’)+ E4,(C, Z’)v’+’(z, z’)] (13)

where
,,

~l(z,zl)=~

R{=[(z-z’)’+r’ –2rr’cos#+r’2]~?C

(14)

Here R: is expressed in the cylindrical coordinates r,+, z
locating the point I’(r, z) where the field is calculated and

r‘, +’, z‘ with r‘ = c on the surface of the insulating cylinder

where the source fields are defined. These last are obtained

from (10)–(12) with the following boundary conditions at
r=c:

B40(C, z’)= Bz+(c> z’)

E4r(c, z’)= (E2e/i4)E2r(c, z’)

E4Z(C, 2’) = E2Z(C, z’). (15)

(Note that C2e/~. = u2poc2,/ti2po<d = k~,/k~.) Owing to

rotational symmetry, the field at r, O,z is the same as at

r,% Z; therefore, C) has been set equal to zero in (14). The
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operator v’ is with respect to the primed coordinates dix B. The resulting formulas are

r’, ~’, z’ locating the source points. In cylindrical coordi-

nates, v’=?’(i3/8r’)+ f’(1/r’)(il/8@’) +2’(i3/8z’). Note iupOl(0)

(( )J

k2
Ed, (r, z) = 4msink~h 1–J

that v = ?(6’/~r)+2(d/dz) since d/d$= O.
~sink~(h – z’)

k: O
The first problem in the determination of the field given

by (13) is the evaluation of the three integrals with respect .[+(Z, Z’)++ (Z, -Z’)] dz’+ *[+(z, h)
to +’, specifically for an antenna that is sufficiently thin so

that

Ikaclz <<1. (16) +$(z, –h)–2+(z,0)cosk~h]

This is carried out in Appendix A. With the notation

+(z, z’)= e’k’R’/R1, R, = [(z – Z’)2 + r2]1/2, where R, is
the distance from the point of observation to the element ++(g-l)c21n:Jhsi*k.(h-z)$

dz’, the results are )

/7 $(z,z)d@{-2m*(z,z) (17) “[y(z>z’)+~(z, -z’)] dz’
\

(22)

—T

(18)

f [

“82+( Z, Z’) . &*(z, z’)
V 4’x v’$’(z, z’) dqi’- m r ~zdr – z
—97 1&.2 “

.[(s*)i+(&+)

(19)

When (10)-(12), (15), and (17)–(19) are used in (13) and “+(z-z’)ldz’-Hw
the ? and .? components are separated, (13) becomes .2. 2

kqLoI(o) (J~4.(~~z)= 4rsink~h -hh sink~(h –lz’l)~(z, z’) dz’

k~

[J
~t(z> z’) dz,—— ‘cosk Jh-z’) ~z

k: O

J
~t(z, z’) dz,— 0 cosk~(h+ z’) ~z

–h 1

“./
d2+(v’)dz,

h sink~(h –Iz’1)
–h Jr 2 }

iqLoI(o)
E4,(r, z)= – dnsink h

L

( [J

kL ~t(z> z’) dz,
k2 ohcosk~(h – Z’) ~r.—

4

J

W(Z! z’) ~z,— 0 cosk~(h + Z’) ~r
–h 1
()1 k:

+– —–1 c21n S2 kz
2e a

“)“coskL(h-z’):
o

“[+( Z,Z’)-+ (Z,‘Z’)] dz’
}

(23)

where, as shown in Fig. 1

R,= [(z – Z’)2+ r2]1’2; R2 = [(z + ZJ)2+ r2]1’2

(24a)

“J )~21/’(z>z’)dz, .h sink~(h –Iz’1) ~z~r (21)
–h

The integrals that contain d/dz can be integrated by parts

by setting d/8z = – d/dz’. This is carried out in Appen-

+(z, z’)= e’k’R’/R,; 4(z, – z’) = e’k4R’/R2. (24b)

Also

(20) aq/(z, z’)

dr2

{,

ik4 1 r2

[

3ik4—— —__
= RI R? R?

k:+T– —
1}

:2 +(Z, z’)
1 1

(24c)

dz$(z, – z’)

8r 2

(24d)

With the conditions lkLc12 < lkqc12 <<1, (c/R1)2 <<1,
(c/R2 )2 <<1, it follows that the terms k~c2( d/i3r)
[+(z, z’)- +(z, - z’)] andc2(i12/dr2)[ ~(z, z’)+ +(z, – z’)]

are negligible, so that the final formulas for the field of a

thin antenna with Ik4cl 2<<1 at points that satisfy R? >> C2,
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R;>> c= are and

iq.@(0)

{( )

~_k~
E~.(r, z) = 4Vstik~h

~’cosk~(h-zf)sin(k,zcos~ )dz

q
o

(

sin k~h cot@
.

)
FO(@, kdh, k=h)

~’sink~(h-z’)[+( z,z’)++(z,-z’)]dz’
k~

o (30)

+:[+(z,h)++(z,–h)
4

–2$(z,0jcosk~h]
}

where

FO(@, k4h, k~h)=
[cos(k,hcost3)-cosk~h] sin@

[(kdk~)-(kA/kL) cos2@]sinkLh “

(25) (31)
I

When (29) is substituted in (27) and (30) in (28), the results

E4,(r, z) = –
Z’CO$OI(0) k~r are

4wiiik~h ~
i@pOI(0) el~qRO

~FO(t3, k4h, k~h)sin@

- ~’cosk~(h-z’)[(~ -fi)~(z,z) ‘:z(RO’@)-@ z7Tk4 o
(32)

-E-w(z>-z’’ldz’
The integrals in (25) and (26) must be evaluated numeri-

cally. Approximate values of the field nearer the antenna

than permitted by the conditions R? >> c’, R; >> c’ can be

obtained by interpolation between (25) and (26) and the

fields on the surface r = c of the antenna. These latter are

given by (15) with (10)-(12). (See Appendix C.)

In the far field, defined by R.= (Z2 + r2)112 >> h > c,
the formulas (25) and (26) can be simplified since R, - R o
—z’cos@, Rz - R.+ z’cos@ in phases and RI - R2 - R.
in amplitudes, where R o and @ are spherical coordinates.

With these values

/’sinkJh-z,)cos(k4zcos@)dz
o

+f[cos(k4hcos@) -cosk~h]
}

(27)

E:,(RO, @) - –
itipoI(0) eikoROk~— —

2~sink~h R. k4
sin @

~’cosk~(h-zt)sin( k4zcos@)dz.
o

(28)

The integrals are now elementary and are given by

J’si*kz(h-z)cos( k.zms@)dz
o

(33)

These cylindrical components can be combined to give the

spherical components E; = Errcos @– E: sin O and E; =

E; sin@ + EJCOS~. The result is

iopoI(0) ei~4~0
EJ(Ro, @)= – Znk ~Fo(@, kdh, k~h)

4 0

E:(Ro, t3)=0. (34)

It is readily verified that when k~ = kd, (22) and (23)

reduce to the field of a bare conductor in Region 4 with a

sinusoidally distributed current, The electric field of such

an antenna is given by [7, p. 58, eqs. (1 la)–(1 lc)] when

k4 = /30and by [8, p. 257, (4.2.21) and (4.2.22)] when these

are corrected by the insertion of sin kh in the denominator.

Also, with k~ = k4, (31) reduces to the familiar far-field

pattern of a bare antenna with a sinusoidally distributed

current. Note, however, that sin k~( h – Iz1)is a much better

approximation of the current in an insulated antenna than

is sin k( h – Iz1) for the bare antenna either in air with

k = & real or in a general medium with k = k4.

IV. THE POLARIZATION OF THE ELECTRIC FIELD

Since the two mutually perpendicular components

E4z(r, z) and E4,(r, z) given by (22) and (23) are not in

phase, the resultant electric field in Region 4 is elliptically

~olarized. In order to determine the maximum value of

E(r, z) and its direction, it is necessary to determine the

polarization ellipses. This cam be accomplished from the

instantaneous values of the two components. Thus

()sin k~h ~4(r, z, t) = Real part ~4(r, z)e-’(ut-oz)
= - Fo(@, k4h, k~h)

4 =lE,z(r, z)l[2cos(@t -Oz)+?Kcos(at -0Z+6K)]

(29) (35)
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where

~e_loK = qr(rj z) . ~= E4, (r,.z)

EA=(r, z) ‘ Eiz(r,.z)

[1

E4r(r>z) .
– eK= arg 8== arg[E,z(r, z)]. (36)

EgZ(r, z) ‘

With the subscript 4 and the arguments r, z temporarily

omitted for simplicity

E=(t) =EZCOS(Ut–6z) (37a)

E,(t) =EzK[cos(tit -6Z)cosf)~ -sin(tit-0Z)sin6~]

=K{Ez(t)cos6~ –[E~– E~(t)]’’2sind~}.

(37b)

The last equation can be rearranged in the standard form

for an ellipse, viz.

Az2+Bzr+Cr2+F=0 (38)

with

A=K2; B = –2Kcos&; C=l; F= – K2E~sin29~

(39)

where z = E=(t) and r = E,(t). In the general equation (38)

of an ellipse, the term in zr can be removed by a rotation

of the axes through an angle O defined by

2 tan 8 2KCOS eK
tan28 = . (40)

1 –tan28 1–KZ “

The angle 6’ is the angle of tilt of the polarization ellipse

from the vertical, i.e., the angle between the major axis of

the ellipse and the z axis. The equation of the ellipse

referred to the new axes z’ and r’ is

A’Z’2 + C’r’2 + F= ()

where

A’=Acos213 +BsinOcos8+Csin20

C’=Asin2@ – Bsin@cos8 -t Ccos26.

Referred to the electric vector and arranged in

form

-%(t)/& + E:(t) /E: = 1

(41)

(42a)

(42b)

standard

(43)

where the semi-major axis E= and semi-minor axis E~ of the

ellipse are

Ea = E, ( K/K’) sin OK; Eb = E, ( K/L’) sindK (44)

with

K’2 = K2cos2d –zKcos OKsindcosd +sin2$ (45)

L’2 = K2sin2 d + 2KCOSOKsin$cos 0 + COS20. (46)

The ratio of major to minor axis is

[

1 +2 Kcosd~tand + K2tan26’ 1’2
Ratio = ~ = cot 6

b 1 –2Kcos8Kcot d + K2cot2fl I

(47)

V. APPLICATION TO A DIPOLE USEFUL IN

HYPERTHERMIA

The antenna which will be used as an example in the

determination of the electric field is thin enough to be

inserted in a catheter embedded in a tumor. For simplicity

and for general interest, the antenna will be assumed to be

a center-driven dipole rather than the more complicated

structure used in hyperthermia cancer therapy. The inner

conductor is assigned the successive electrical half-lengths

p~h = v/4, v/2, v, 3v/2 at f = 915 MHz; its radius is

a = 0.47 mm. The antenna was constructed from Cooner

CZ- 1105-1 flexible gold-plated, copper-braided cable with

a 33-Q characteristic impedance. The insulating dielectric

has two layers, an inner layer of air with outer radius

b = 0.584 mm and relative perrnittivity (2,=1, and an

outer layer (plastic tube) with outer radius c = 0.80 mm

and relative permittivity c~, = 1.78. For an equivalent single

layer, (2=, = 1.373. The infinite ambient medium is given

the properties of human brain tissue with the real relative

permittivity 6A,= 42.5 and the real effective conductivity

Ug= 0.88 S/m. The wavenumbers of the three materials

and for the equivalent single-layer dielectric are

k2=19.2 m-l; kq=25.6 m-1

k2, = 22.5 m-*; kd = 127.5+ i25.m-1. (48)

Note that with lk4c12= 0.01, (k2ec)2 = 3.24 x 10-4, and

lk4/kz.12 = 33.3, the conditions (1) and (16) are well satis-

fied. The wavenumber k~ and characteristic impedance ZC

of the insulated antenna are

k~ = 50.6+ i10.7 m-l; ZC= 71.4+ i16.3 Q. (49)

In order to have an experimental check on the degree in

which the theory approximates the properties of the actual

antenna, the driving-point impedance was both calculated

and measured over a wide range of lengths. In order to

approximate a dipole, a monopole over a ground plane was

used. The results for the monopole are shown in the

complex plane in Fig. 2. A part of the difference between

the theoretical and measured impedances is due to the

thinness of the antenna which makes it difficult to have it

perfectly straight and accurately centered in the plastic

tube. Measurements with deliberately bent and eccentri-

cally located antennas indicate that differences in reactance

up to 8 or 100 and resistance up to 4 or 50 are possible as

compared with a perfectly straight, accurately centered

antenna. Further differences between theory and experi-

ment are a consequence of the finite size of the ground

plane (diameter -10 cm -2 Aa ) used in the measurements,

and of junction effects [9] for which no corrections were

made. When account is taken of these physical differences

between the ideal conditions assumed in the theory and

those obtaining in the measurements for a practical an-

tenna for use in hyperthermia, the agreement ‘is quite

satisfactory [1O].

The theoretical distributions of current along four in-

sulated monopoles with the electrical lengths /?~h = 7r/4,
T/2, T, and 37r/2 are shown in Fig. 3. The electric field in
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50.6+ t10.7 m–’; ZC= 71.4+ i16.3 Q; I(z)= lI(z)lexp(–~t91); (1~=
tal-’(Ir/IR).

a typical quadrant of the surrounding medium (Region 4)

has been calculated for each of these four lengths from (25)

and (26). To evaluate the two integrals in these expressions,

the complex value of each integrand was computed for

each of a sequence of discrete values of z‘. The real and

imaginary parts were then treated separately. As functions

of z’, they were integrated numerically by fitting cubic

spline polynomials [11]. The complex values of the two

definite integrals were then formed from the real and

imaginary parts, and the evaluation of (25) and (26) was

completed. In the evaluation, the expression (2a) was used

for 1(0) with the driving emf V;= 1 V. The calculated

values of IE=I and IE, I are displayed graphically in Figs.

4(a) and (b) and 5(a) and (b) as functions of axial distance

parallel to the antenna with the radial distance from its

axis as the parameter. Close to the antenna and not too
near its open end, IE=I varies roughly like 11=I and Ili,l like

100.
‘. r(cm) v: =1volt

=.
-= --,1

-.,

z
E
j
g

~

:.

–1 -

— l,505cm 7/4
--31cm WI2

I - 1 1 I
o 1 2 3,

z an cm

(a)

,LIII___
o 2 4 6 8

z m cm

(b)

Fig. 4. IE=l near insulated monopoles in a dissipative medium; k= = 50.6
+ i10.7 m-l: Z.= 71.4+ i16,3 Q. (a) h =1.505 and 3.1 cm: (b) h =6.2
and 9.3 cm. “

100 .
: V:=l volt ,$ r@-l

/’ ‘\
/ _+\~ \

- :3,

/l /’ \\ ~
/
2 \l

-–-,5 \l
10

~ \ 1,

; /’5 , ——. ( \

: /
\\

\\g
/ ‘ 1 - –--2, l\

~ / 3 ‘IL.—---
:

1 /’,’ ‘Q

/2 I

/ \

3
h /3Lh

— 1505cm 7/4
—— 3,1cm W12

‘o 1 2 3 4

z m cm

(a)

,o-

zmcm

(b)

Fig. 5. I-E.I near insulated monopoles in a dissipative medium; k, = 50.6
‘+ z1O.7m-]; 2== 71.4+ i16.3”fl. (a) h = 1.505 and 3.1 cm; (bfh =6.2
and 9.3 cm.

q(z). The graphs in Figs. 4(a) and (b) and 5(a) and (b)

show that the electric field decreases very rapidly with

increasing radial distance from the antenna. The field is, of

course, rotationally symmetric about the axis of the m--

tenna.

The radial and axial components of the electric field

were combined in the manner described in Section IV to

obtain the polarization ellipses shown in Figs. 6–9 for the

four lengths. Each ellipse represents the path traced by the

arrow end of the electric vector in one cycle when its other

end is fixed at the center of the ellipse, The scale of the

ellipses in these figures was adjusted to permit meaningful

graphs. The actual values of the fields can be obtained
from Figs, 4(a) and (b) and 5(a) and (b) which are in volts

per meter for a driving emf of 1 V. The electric fields in
Figs. 7-9 are superficially similar to the elliptically

polarized field of a bare antenna with &h ==7r/2, m and

3n/2, as shown in [7, figs. 8.4, 8.6,9.1 of ch. ~, [8, p. 278],

and [12, fig. 6]. However, if immersed in the same ambient

)
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Fig. 6. Electric field of an insulated monopole with &h - 7r/4 in a

dissipative medium; h = 1.505 cm, kL = 50.6 + i10.7 m-1; ZC = 71.4+

116.3 il.
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Fig. 7. Electric field of an insulated monopole with f?Lh - .i7/2 in a

dissipative medium; h =3.1 cm, kL = 50.6 + i10.7 m-1; ZC = 71.4 +
i16.3 Q.
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Fig. 8. Electric field of an insulated monopole with ~Lh - m in a

dissipative medium; h = 6.2 cm, kL = 50.6+ i10.7 m-l; ZC = 71.4+
i16,3 Q.
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Fig. 9. Electric field of an insulated monopole with ~Lh - 37/2 in a
dissipative medium; h = 9.3 cm, kL = 50.6+ i10.7 m-1; ZC = 71.4+
J16.3 Q.

medium, the actual lengths are very different since & =

127.5 m-1, whereas ~== 50.fj m-’. It follow5 that for

DLh = 77/2, h = 3 cm for the insulated antenna, and for

l?dh = 7r/2, h = 1.2 cm for the bare antenna.

It is to be noted that if the elliptically polarized field is

investigated experimentally with a small movable dipole,

the measurements do not reproduce the polarization el-

lipses but quite different polarization patterns. This is

discussed and the patterns displayed in [8, sec. 4.9], [12, pp.

282, 283].

Also of interest is the rate of heat generation as a

function of location relative to the antenna. The power per

unit vol~m$ of tissue dissipated in heat is given by

(1/2) CJdE.E* = (1/2) uA(lE,12 +IEZ12), where Uq = au +
Qc; is the real effective conductitit y of the ambient

medium. The power dissipated per unit volume per Watt

input to the antenna, i.e., UA(IE, I2 + IEZ 12)/ V;zGO, where

GO is the input conductance of the antenna, has been

calculated. The distribution of power dissipated as heat is

shown in Fig. 10 in several planes along the lengths of the

antennas with the radial distance from the antenna as the

variable. Since the volume in which most of the power is

dissipated is roughly proportional to the length of the

antenna, the quantity actually plotted for ready compti-

son is muQ(lE~12 +lEz12)/V;2G0, where m = 1, 2, 4, and 6 is

the approximate ratio of the length of the antenna to the
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Fig. [0. Power dissipated in ambient medium in Watts/cc per input
Watt to the antenn% U4 = 0.88 S/m, (4, = 42.5; kL = 50.6 + i10.7 m-’.

length of the shortest element. The four sets of graphs

indicate that the distribution of dissipated power and,

hence, of heat generated is not particularly sensitive to the

length of the antenna; in all cases, a cylinder surrounding

the dipole absorbs comparable and fairly uniformly dis-

tributed amounts of energy over most of the length of the

antenna. There is a very rapid decrease with radial distance

owing to the high conductivity of the ambient medium.

This emphasizes the desirability of an array of three or four

insulated antennas around the volume to be heated. This

configuration will be investigated in a later paper.

APPENDIX A

Before the integrals in (17)–(19) are evaluated, it is

convenient to express the operations indicated in (18) and

(19) in terms of the unprimed coordinates r,+, z locating

the point of observation instead of the primed coordinates

r’, +’, Z’ locating the source points on the surface of the
antenna. This is carried out first for (18)

[-

6’+’(2, z’) ~, aRi +$/ 1, aR\ ~J5J
V’ip’(z, z’)=

13R\ W r a+’ 1az’ “

(Al)

With i3R~/&’ = (r’ – rcos @’)/R\, (1/r’)(8R~/8#) =
(rsin&)/R~, 8R< /8z’ = – (Z – z’)/R; ad from Fig. 1 L

?’= ?cos@’+ ~sin@’, # = – ?sin@’+ ~cos+’, 2’= 2?,it fol-

lows that

V’+’(Z, Z’)= [8+’(Z, z’)/R{8R~]

.[?(r’cos~’– r)+$(r’sin~’) –f(z–z’)] (A2)

Fig. 11. Cross section of conductor with radius r’= c, and unit vectors
;’, & and ~,~.

and

Jmv’*’(z>z’)~+’=2Jn[ a+’(z?z’)/RiaR{l
—T

.[t(r’jos$’– r)–~(z – z’)] d+’. (A3)

It is readily verified that the integrand in (A3) is simply

– v+’(z, z’). Hence

(A4)

The integral on the right in (A4) is the same as the integral

in (17).

The integral in (19) is evaluated in a similar manner as

follows:

/
“ (jX v’I/J’(Z, Z’) d+’
-v

=— J“ ($’X V+’(2, Z’) d+’
—r

=-j-:m[(wot’~z’) +(wa+’~z’qw.
(A5)

With ~’= – ?sin+’ + ~cos +’, it follows that ~’ x t =

— fcos~’, $X 2 = — ~sin~’+ ?cos+’. Hence

77

/[

a+f(z, z’) a+’(2, 2’)=— ?
az

Cos +’ – J ~z sin $’
—v

a+’(z, z’)
—2

ar 1
COS+’ d#

[

8 .d
]J

‘$ ’(z, z’)cos#d#.
‘–2%-zTr fJ

(A6)

In order to evaluate the integrals in (A4) and (A6), use is

made of the following integral representation of the Bessel

function:

/

?7

e -“cos$cosn+dc)= (– 2)”nrn(z). (A7)
o

The integrands in (A4) and (A6) are first transformed with
the following approximate formula for the distance R{
defined in (14). Use is made of the distance R, given in
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(24a).

[ 1

2rc cos +’ c2 1’2
R~=R1 l– —— - R, –(rc/R1)cos@.

R: R?

(A8)

The approximation requires that

R? >> C2 or RI > 4c. (A9)

For c = 0.8 mm, this requires R >3.2 mm. With (A8)

*’(z, z’) - +(z, z’)e

-(k4c’’R’)c0s0’[1+5 c0so’lo ‘AIO)

With (A1O) and (A7), it follows that

/7 *’(z, z)d@)-27*(z,z’)
—77

. [JO(k,cr/R,)-i( rc/Rf).ll(k,cr/R1 )]. (All)

If the condition for a thin antenna, IIC4C12<<1, is now

invoked, the small-argument approximations of the Bessel

functions may be used. Furthermore, (rc/R~).ll(kocr/Rl )
- kac2r2/2R~ <<1, so that for use in (17) and (18) with

(A4)

/m +(z,z)d@-2m+(z,z). (A12)
—r

Alternatively, for use in the far zone, where in amplitudes

Rl - RO, r/RO = sin @, and with no restriction on k~c

f 4(z,zr)d@r-2@(.z,z)JO(k,csin@). (A13)
—r

The evaluation of (A6) proceeds in a similar manner.

With (A1O) and (A7), and the relation COS2+’ = (1/2)(1 +

cos 2@’), it follows that

.{ IP(z, z’)[fl,(k,cr/R,)- (rc/2@)J,(~,cr/R,)
+(rc/2R~).J, (kAcr/Rl)]}. (A14)

With the small-argument approximations permitted by

lkdc12 <1 and the condition c2\Rf <1, the contribution

by the term with J2(kAcr/Rl) as a factor is negligible.

Hence

“[r(:-+?)+(zz’i‘A”)
()ikd

However, r ~ – ~ +(z, z’)= il$(z, z’)/i3r, so that
1 I

(A16)

In the far zone with r/R1 - r/RO = sin @

I
m ~’x v’$’(z,z’) d+’- 2miJl(kdcsin@)
—n

“[ 1?:—++(Z, Z’).

APPENDIX B

The following integrals in (20) and (21) are

transformed with integration by parts to obtain:

(A17)

readily

I
~2+(z, z’) dz,

h sinkL(h –Iz’1) dz ~r
–h

. –k~j~cosk~(h– z’)+[~(z,z’)–+ (z, –z’)] dz’
o

(Bl)

~’cosk&z’) ‘+$jz’)dz’

J

8+(2, z’) dz,
— 0 cosk~(h+ z’) ~z

= ‘[i~z, k)++(z, -h)-2$(z,0)cosk.h]

+k~j’sink~(h-z’)[i(z, z’)+l(z, -z’)] dz’
o

(B2)

Note also that

(1

d~(z, z’) = ikq 1—— —
& RI R?

r$(z, z’) (B3)

a+(z, – z’)

()

ikd 1—— —
ilr = R2 R:

r~(z, –z’). (B4)

APPENDIX C

In order to determine the electric field between the

surface r = c of the insulator and radial distances r > c that

satisfy the inequalities R; >> C2,R; >> C2which permit the

neglecting of the last terms in (22) and (23), it is possible to

inte~olate between the two sets of formulas, For El,(r, z)

this is straightforward since it decreases continuously es-

sentially as 1/r outward from the surface r = c of the

insulator. For ~d= (r, z) the interpolation is complicated by

the fact that E2Z(r, z) increases logarithmically from zero

at r = a to r = c and then reaches a maximum just beyond

r = c in Region 4. This behavior is illustrated in Fig. 12 for

a resonant monopole ( ~~h = m/2) at three cross sections.

lE=(r, z)I is calculated from (12) for a < r < c (0.47 < r <0.8
mm) and from (25) for r >1 mm. Similar graphs in Fig. 13

show IE, ( r, 0)1for monopoles with five different lengths as

a function of r from a < r < c (0.7< r <1.0 mm), as calcu-

lated from (12), and for r >1 mm, as calculated from (25).

Since the conditions R? >> C2 and R~ >> C2 range from

r 2>> C2 to (r 2 + h2) >> C2 in the range of integration, it is

difficult to assess the importance of the neglected term

when r is near c. Calculated points are shown in Figs. 12

and 13 with c/r as large as 0.8. Graphs constructed with
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Fig. 13. Magnitude of E, ( r, O) in insulator and ambient medium for
monopoles of different lengths h.

them are reasonable, but they may be somewhat in error

near their maxima in the range between r = c and values

that satisfy r 2>> C2.
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