574

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 7, JULY 1983
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Abstract —Insulated antennas are useful for localized heating as in the
hyperthermia treatment of tumors and the extraction of shale oil. The
distribution of current in and the admittance of a center-driven dipole
embedded in a general medium are reviewed. Formulas for the electric field
generated by the currents in the dipole are derived for all points outside the
antenna. Near the antenna, the field is elliptically polarized. Formulas for
the polarization ellipses are derived and evaluated for antennas with
electrical half-lengths 8; 4 = /4, n/2, =, and 37/2, where k; =, +ia,
is the wavenumber of the current, and this is different from the wavenum-
ber of the ambient medium.

I. INTRODUCTION

HE INSULATED DIPOLE and monopole are useful

not only in subsurface communication but also in
localized heating. This is accomplished by the embedding
of a suitably designed insulated antenna [1] into the material
to be heated. One such application—which is of primary
interest to the authors of this paper—is the insertion of an
insulated antenna into a tumor to produce local hyperther-
mia in conjunction with radiation therapy [2], [3]. This
application requires antennas of very small size operated at
a very high frequency. A theoretically similar but practi-
cally very different use of insulated antennas for localized
heating is in the extraction of shale oil. For this purpose,
very large insulated antennas are inserted into boreholes in
the shale and heated at an appropriate much lower
frequency. In both applications, interest is primarily in the
field quite close to the antenna where most of the heating
takes place. The near electric field of a bare or insulated
dipole in a medium like muscle or the earth is much more
involved than the far field because it is elliptically polarized.
Simple expressions in closed form are not available. The
determination of the field of an insulated dipole is further
complicated by the fact that the wavenumber for the
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Fig. 1. Insulated dipole in ambient medium.
current in the antenna is complex and different from the
wavenumber of the surrounding medium.

II. 'THE PROPERTIES OF THE INSULATED DIPOLE

An insulated dipole (Fig. 1) consists of a central conduc-
tor (Region 1) with the half-length 4 and radius a sur-
rounded by a cylinder of dielectric which may consist of
one or two layers (Regions 2 and 3), respectively, with the
outer radii b and c¢. Outside this insulating sheath is the
infinite ambient medium (Region 4) which may be con-
ducting or dielectric. The central conductor is sufficient-
ly highly conducting to be well approximated by a per-
fect conductor. The wavenumbers of the dielectric layers
are k,=w(pee;)”? and k, = w(pqe;)/? where €, and
€3 are taken to be real since the dielectrics actually used are
highly nonconducting. The wavenumber of the conducting
or dielectric ambient medium is k, = B, + iay = w(p4€,)"?,
€4=€4ti0,/w.

The general theory of the insulated antenna applies
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when the wavenumber of the ambient medium is large
compared to that of the insulating sheath and the cross
section of the antenna is electrically small. That is

lka/kol? 15 (ky/ka> > 15 (kyb)’ <15 (kse)® <1.
(1)

Subject to these conditions and with the time dependence
e ¥ the current in the central conductor is [1], [4]-[6]

B sink; (h—|z|)

1(z) = 10—

1(0) =V5Y, =V5/Z, (2a)
where the admittance is

Yo=—(i/2Z, )tank h. (2b)
For a dielectric with two layers
o — k In(c/a) U m(c/a)+F |7
L n(b/a)+ nkn(c/b) In(c/a)+n3, F

(3)
Z, = (wpok, /27k2)[In(b/a)
+n3In(c/b)+ n§4F] (4)

where n%, =k3/k?, ni,=k3/k2, and F= H{"(k,)/
k,cH(k,c). These formulas can be simplified by the
introduction of an effective wavenumber k,, and an effec-
tive permittivity €,, for an equivalent dielectric composed
of a single layer with the outer radius c, viz.,

e —k In(c/a) 12
2 "' In(b/a)+n%1n(c/b)

e [ In(c/a) ]
| n(b/a)+nZn(c/b) |

With (5), the above formulas become

€2e

)

kp=ky,[In(c/a)+ F1?[In(c/a)+ n§4l""]_l/2 (6)
Zc= (wMOkL/z"Tk%e)[ln(C/a)'Fn%e“F] (7)

where n3_, = k3,/k2. The charge per unit length associ-
ated with the current is

( )‘___i 31(z) _ Vsky cosk(h—z)
anz)= 20Z, cosk;h

w 0z .
0<z<h (8)
q(=2)==q(2). ©)

Since the field outside the insulator can be calculated as
accurately and more simply with the equivalent single
layer, this will be used. The cylindrical components of the
electromagnetic field in the effective single-layer insulator,
a <r <c, with permittivity e,, and wavenumber k,, are

>
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approximated by
pol(z) — pol(0) sink, (h—|z))

Bay(r.2) ~ =5, 2ar  sink,h
-h<z<h (10)
E,(r.z)~ q(z) _ ik I(0) coskL(h—z)’

2me,,r 27, rw  sinkh
0<z<h (lla)
_ ik, I(0) cosk,(h+z)

sink; h
—h<z<0. (l1b)

A somewhat less accurate but adequate value of the small
axial component of the electric field is obtained from one
of Maxwell’s equations by differentiation and integration.
Thus

b

27e, rw

r| JE ,
EZZ(r,z)~/ [—hé(z—ri)—inzq,(r,z)] dr

_iepgI(0) _ K
= In(r/a)|l .

sin k(b —|z])

© sink gk (12)

III. ThHE ELECTRIC FIELD MAINTAINED BY THE

ANTENNA

The electric field outside the antenna in Region 4 is
given by [5, p. 523, eq. (7.12)]

r 1 h 7 ; ’ 4 [AW-14
E(r,z)= Z’r-f_ hdz’f_ r’d¢’[sz4¢(c, 2)Y'(z,2")2

—E4, (e, 2)¢' X V'Y (2,2)+ By (e, 2) V¥ (2, 2')]  (13)
where

ik4R)

’ ’ €
2,2 )= 7
V() =g

1/2

r'=c¢

Rj= [(z — z’)2+ r2—2rr'cos¢’ + r’2]

(14)

Here R] is expressed in the cylindrical coordinates 7, ¢, z
locating the point P(r, z) where the field is calculated and
r’, ¢, z’ with ' = ¢ on the surface of the insulating cylinder
where the source fields are defined. These last are obtained

from (10)—(12) with the following boundary conditions at
r=c:

B4¢(C’ Z/) = B2¢(c’ ZI)
E,, (¢, 2') = (3. /€4) By, (¢, 2')
E, (¢c,2)=E,.(c,2'). (15)

(Note that €,, /&, = wpy€,, /0 o€y = k3, /k3.) Owing to
rotational symmetry, the field at r,0, z is the same as at
r, ¢, z; therefore, ¢ has been set equal to zero in (14). The
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operator v’ is with respect to the primed coordinates
r',¢’, 2’ locating the source points. In cylindrical coordi-
nates, V'=F#(d/dr")+ ¢ (1/r'Y(8/3¢)+ 2'(9 /3z’). Note
that v =#(d/dr)+ 2(3/3dz) since d/d¢ = 0.

The first problem in the determination of the field given
by (13) is the evaluation of the three integrals with respect
to ¢, specifically for an antenna that is sufficiently thin so

that
(16)

This is carried out in Appendix A. With the notation
Y(z,z)=e*Ri/R,, R =[(z—2z)*+r?]"?, where R, is
the distance from the point of observation to the element
dz’, the results are

[ ¥z ) de ~2my (. 2) (17)
2 9¥(2, 7)) Aé"l/(z,Z’)]
[r ar te dz

(18)

k> <1.

[ () e ~~2a

—aT

0 (z,2)
daz ar 8r2
(19)
When (10)-(12), (15), and (17)~(19) are used in (13) and
the 7 and £ components are separated, (13) becomes

oI (0 ,
=é%‘ﬂ,—é)z{f_h,,ska(h—:z'fw(z,zf) i

ki | rh NOY(z,2)
~;£[[) coskL(h—z)L(a—z—)dz

f ¢><v’¢(z z)d¢~7rc[

E4z(r’ Z)

2
4

—f cosk,(h+z)——>—

+1 —k———l 2n &
k2e a
2 ’
-/h sinkL(h—|z’|)é——¢(#zdz’}
~h ar

iwpoI(0)
4asink; h

k h ’ 34/(2’2/) ’
{—};é[fo cosk,(h—z )—sz

3¢(z 2) 4 }

(20)
E4r(r, Z) =

2
4

-fo cosk,(h+ z’)ﬂ%ldz’]
—h r

1
4+ —

k2
—£ 1)c21n£
% a

~f_ sink, (h—|z/ |)a z,b(z Z) z}. (21)

The integrals that contain d/dz can be integrated by parts
by setting d/dz = — d/dz’. This is carried out in Appen-

Za%p(z,z')}

dix B. The resulting formulas are

M{(hi—é)/ksinkdh‘z')
i 0

Ey.(r.2) = dxsink; h

9z )+ 9 (2, 2)] dz'+%[¢(z,h)

+y¥(z,—h)—2¢(z,0)cosk h]

k? 21 € fh . N
'];2——1)0 111;](; SlnkL(h—Z)-{;E

2e

+1
2

()4 4z, = )] dz'} @)

iw,uOI(O)

kpr rn ,
E4r(r,z)——m{7{/(; COSkL(h—Z)

’J’(Z’ - Z,)

k2
dz'~l(—L—1)kLc21n5
k a
h N
j(; COSkL(h—Z)E

(2, 2)=¥(z, - 2)] dZ’} (23)

where, as shown in Fig. 1

= [(z - z’)2+ rz]l/z; R,= [(z + z’)2+ r2]1/2
(24a)
Y(z,27)=e"R/Ry; Y(z,—2)=e*R2/R,.  (24b)
Also
N (z,z")
ar?
ik, 1 r? 3ik, 3 }
“{R " m kT | v (e
{Rl R12 Rz[ ¢ R 12]
(24¢)
(z,—2')
ar?
ik4 1 r2 2 31k4 3 ,
{E—R—g_ﬁ R, ®m ¥(z,-2)
(244d)

With the conditions |k,c|? <]k <1, (¢/R)* <1,
(¢/Ry)* <1, it follows that the terms k,c%(3/9r)
[¥(2,2)= ¥(z, = z))] and *(8%/Ir?)[Y (2, 2)+ ¥(z, ~ 2')]
are negligible, so that the final formulas for the field of a
thin antenna with |k,c|? <1 at points that satisfy R? > ¢2,
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R2 > ¢* are
-j(;hsinkL(h—z’)[zp(z,z’)+ ¥(z, - 2)] dz
-?[zp(z h)+(z,— k)
—2¢(z,ojcoskLh]} (25)
By (r, 2) = — A2l ) Kyr

Axéink h k2

-fhcoskL(h -2’)
0

ik, 1 ,
(E—E)’J/(Z,Z)
ik, 1

ATAEV

The integrals in (25) and (26) must be evaluated numeri-
cally. Approximate values of the field nearer the antenna
than permitted by the conditions R? 3> ¢?, R% > ¢? can be
obtained by interpolation between (25) and (26) and the
fields on the surface r = ¢ of the antenna. These latter are
given by (15) with (10)-(12). (See Appendix C.)

In the far field, defined by Ry = (z*>+r2)/?2>h>c,
the formulas (25) and (26) can be simplified since R, ~ R,
—2’cos®, R, ~ Ry + z'cos® in phases and R, ~ R, ~ R,
in amplitudes, where R, and © are spherical coordinates.
With these values

k2
g

~fhsinkL(h —z")cos(k,z'cos®) dz’
0

(26)

iwit- I(0) eiksR
Efz(Ran)" ko () - 0{ a

2wsink;h R,

+%[cos(k4hcos®)—coskLh]} (27)
4

iopol(0) e o k.
2wsink;h R, k,

-fhcoskL(h——z’)sin(k4z'cos®)dz’.
0

(28)

E;(R),0)~ - sin®

The integrals are now elementary and are given by

fksin k, (h—z")cos(k,z' cos®) dz’
0

_[sink h
"\ kysin®

)Fo(@,km,kLh)

(29)
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and
fhcoskL(h —z')sin(k,z' cos®) dz’
0

_ ( skak};cotG )FO(G), kb, K h)
(30)

where

[cos(k hcos®)—cosk, h]sin®
[(kp/ks)—(ky/ky)cos?®]sink h
(31)
When (29) is substituted in (27) and (30) in (28), the results
are

iwpyI(0) etksk

E;,(Ry,0)~ 2k, R, F0(® kyh,k, h)sin®
- (32)
I
Ef(R,,0)~— _’_‘*_’5‘_0#)_61{ Fy(©, kyh, k h)cos®.

(33)

These cylindrical components can be combined to give the
spherical components E§ = E/cos® — E/sin® and Ej =
E!sin® + E]cos©. The result is

iwpyI(0) etkeR
2k, R,

EL(R,,0)=— SACR AR

(34)

It is readily verified that when k; =k,, (22) and (23)
reduce to the field of a bare conductor in Region 4 with a
sinusoidally distributed current. The electric field of such
an antenna is given by [7, p. 58, egs. (11a)—(11¢c)] when
k, = By and by [8, p. 257, (4.2.21) and (4.2.22)] when these
are corrected by the insertion of sin k4 in the denominator.
Also, with k; =k,, (31) reduces to the familiar far-field
pattern of a bare antenna with a sinusoidally distributed
current. Note, however, that sin k; (4 ~|z|) is a much better
approximation of the current in an insulated antenna than
is sink(h —|z|]) for the bare antenna either in air with
k = B, real or in a general medium with k = k,,.

EL(R,,0)=0.

IV. THE POLARIZATION OF THE ELECTRIC FIELD

Since the two mutually perpendicular components
E, (r,z) and E, (r,z) given by (22) and (23) are not in
phase, the resultant electric field in Region 4 is elliptically
polarized. In order to determine the maximum value of
E (r, z) and its direction, it is necessary to determine the
polarization ellipses. This can be accomplished from the
instantaneous values of the two components. Thus

E4(r, z,t) = Real part E‘4(r, z)e =6
=\E,,(r, z)|[ £cos(wt — 6,)+ 7K cos(wt — 6, + 6 )]
(35)
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where
Ke—zﬁ,(___ E4r(r,z) : K= E4r(r’Z)
E.(r,z) E(r,z)
E,(r,z)
— 0y = arg E—:z(—r—’—z)—]; 0z=arg[E4z(r,z)]. (36)

With the subscript 4 and the arguments r, z temporarily
omitted for simplicity
E (t)=E,cos(wt—40,) (37a)
E,(t) = E,K [cos(wt — 8,) cos 0 —sin (wt — 6, ) sin b |
= K{E,(t)cosb — [ E2— EX(1)]sinéy }.
(37b)
The last equation can be rearranged in the standard form
for an ellipse, viz.
Az*+ Bzr+ Cr?+ F=0 (38)
with
A=K?; C=1; F=-—KZ2Esin’fy
(39)
where z = E,(¢) and r = E,(¢). In the general equation (38)
of an ellipse, the term in zr can be removed by a rotation
of the axes through an angle # defined by

2tand  2Kcosby
1-tan’§ 1—-K?
The angle 4 is the angle of tilt of the polarization ellipse
from the vertical, i.e., the angle between the major axis of

the ellipse and the z axis. The equation of the ellipse
referred to the new axes z” and r’ is

B=—2Kcosby;

(40)

tan28 =

A2 4P+ F=0 (41)

where
A'= Acos?8 + Bsinfcos § + Csin* 6 (42a)
C’= Asin® 6 — Bsinfcos 6 + Ccos*4. (42b)

Referred to the electric vector and arranged in standard
form

EZ(t)/E; + Ej(¢)/E; =1 (43)

where the semi-major axis £, and semi-minor axis E, of the
ellipse are
E,=E,(K/K')sinby; E,=E/(K/L)sinf, (44)
with
K’* = K?*cos? 8 —2Kcos 0 sinfcos 8 +sin® §
L? = K?sin® § +2Kcos O sinfcos § +cos> 6.

(45)
(46)
The ratio of major to minor axis is

. E, 1+2Kcosftand + K2 tan? g |/
Ratio=—-=cot
E, 1—2Kcosfxcotd + K?cot?

(47)

V. APPLICATION TO A DIPOLE USEFUL IN
HYPERTHERMIA

The antenna which will be used as an example in the
determination of the electric field is thin enough to be
inserted in a catheter embedded in a tumor. For simplicity
and for general interest, the antenna will be assumed to be
a center-driven dipole rather than the more complicated
structure used in hyperthermia cancer therapy. The inner
conductor is assigned the successive electrical half-lengths
B h=w/4, w/2, @, 3u/2 at f =915 MHz; its radius is
a = 0.47 mm. The antenna was constructed from Cooner
CZ-1105-1 flexible gold-plated, copper-braided cable with
a 33-Q characteristic impedance. The insulating dielectric
has two layers, an inner layer of air with outer radius
b=0.584 mm and relative permittivity ¢,, =1, and an
outer layer (plastic tube) with outer radius ¢ =0.80 mm
and relative permittivity ¢,, = 1.78. For an equivalent single
layer, €,,, =1.373. The infinite ambient medium is given
the properties of human brain tissue with the real relative
permittivity €,, =42.5 and the real effective conductivity
o, =0.88 S/m. The wavenumbers of the three materials
and for the equivalent single-layer dielectric are

ky=192m™"; ky;=256m"'
ky,=22.5m""; k,=1275+i25.m"%.  (48)

Note that with |k,c|>=0.01, (k,,c)?>=3.24x10"%, and
lk4/k5,|? = 33.3, the conditions (1) and (16) are well satis-
fied. The wavenumber k; and characteristic impedance Z,
of the insulated antenna are

k; =506+i107m™"; Z =714+i16.39Q. (49)

In order to have an experimental check on the degree in
which the theory approximates the properties of the actual
antenna, the driving-point impedance was both calculated
and measured over a wide range of lengths. In order to
approximate a dipole, a monopole over a ground plane was
used. The results for the monopole are shown in the
complex plane in Fig. 2. A part of the difference between
the theoretical and measured impedances is due to the
thinness of the antenna which makes it difficult to have it
perfectly straight and accurately centered in the plastic
tube. Measurements with deliberately bent and eccentri-
cally located antennas indicate that differences in reactance
up to 8 or 10 © and resistance up to 4 or 5 £ are possible as
compared with a perfectly straight, accurately centered
antcnna. Further differences between theory and experi-
ment are a consequence of the finite size of the ground
plane (diameter ~ 10 cm ~ 2A,) used in the measurements,
and of junction effects [9] for which no corrections were
made. When account is taken of these physical differences
between the ideal conditions assumed in the theory and
those obtaining in the measurements for a practical an-
tenna for use in hyperthermia, the agreement is quite
satisfactory [10].

The theoretical distributions of current along four in-
sulated monopoles with the electrical lengths B, h = /4,
7/2, m, and 37/2 are shown in Fig. 3. The electric field in
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Fig. 2. Impedance Z, = R, — 1 X, of insulated monopole in a dissipative
medium; k; =50.6+i10.7m™!; Z,=71.4+i163 Q.
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Fig. 3. Current in insulated monopole in a dissipative medium; k; =
50.6+110.7 m™"; Z,=71.4+i163 Q; I(z)=|I(z)exp(—16;); 6;=
tan”™' (I /Ig).

a typical quadrant of the surrounding medium (Region 4)
has been calculated for each of these four lengths from (25)
and (26). To evaluate the two integrals in these expressions,
the complex value of each integrand was computed for
each of a sequence of discrete values of z’. The real and
imaginary parts were then treated separately. As functions
of z’, they were integrated numerically by fitting cubic
spline polynomials [11]. The complex values of the two
definite integrals were then formed from the real and
imaginary parts, and the evaluation of (25) and (26) was
completed. In the evaluation, the expression (2a) was used
for I(0) with the driving emf V=1 V. The calculated
values of |E,| and |E,| are displayed graphically in Figs.
4(a) and (b) and 5(a) and (b) as functions of axial distance
parallel to the antenna with the radial distance from its
axis as the parameter. Close to the antenna and not too
near its open end, |E,| varies roughly like {/,| and |E,| like

i
|E;l i Volts/meter

579

100

100

V¢ =1 Volt

3

LEZl n Volts/meter

T

--=-62cm 7w
| ——93em  3w/2
1 1 L
[¢] 2 4 6 8 10

Zmcm
()
Fig. 4. |E_| near insulated monopoles in a dissipative medium; k; = 50.6

+il07m™ Y Z,=71.4+ 163 Q. (@) h=1.505 and 3.1 cm; (b) h =6.2
and 9.3 cm.

100 100

E V5=1Volt riem) 1 V§ =1 Volt h B.h
N - N
- -~ AY
- - 3\
C 1 -2
N
% - \ \\
2 \
——
N
3 F N
: f RN 3
~ [ N 3
20 N} RS
o ~ .2 ‘ A
> ~L K =
S T -3 N >
- - <
gL B
E \ o
[ h Bb
r ——1505¢cm  w/4
-—=— 3lcm /2
1 | [ —l
0 1 2 3 4
Z incm
@
Fig. 5. |E,| near insulated monopoles in a dissipative medium; k; = 50.6

+:10.7m™ Y Z,=71.4+i16.3 Q. (a) h =1.505 and 3.1 cm; (b} h = 6.2
and 9.3 cm.

q(z). The graphs in Figs. 4(a) and (b) and 5(a) and (b)
show that the electric field decreases very rapidly with
increasing radial distance from the antenna. The field is, of
course, rotationally symmetric about the axis of the an-
tenna.

The radial and axial components of the electric field
were combined in the manner described in Section IV to
obtain the polarization ellipses shown in Figs. 69 for the
four lengths. Each ellipse represents the path traced by the
arrow end of the electric vector in one cycle when its other
end is fixed at the center of the ellipse. The scale of the
ellipses in these figures was adjusted to permit meaningful
graphs. The actval values of the fields can be obtained
from Figs. 4(a) and (b) and 5(a) and (b) which are in volts
per meter for a driving emf of 1 V. The electric fields in
Figs. 7-9 are superficially similar to the elliptically
polarized field of a bare antenna with 8,4 =7/2, 7 and
3m/2, as shown in [7, figs. 8.4, 8.6, 9.1 of ch. V], [8, p. 278],
and [12, fig. 6]. However, if immersed in the same ambient
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medium, the actual lengths are very different since By=
127.5 m~', whereas B, =50.6 m~'. It follows that for
BLh=m/2, h=3 cm for the insulated antenna, and for
Byh=m/2, h=1.2 cm for the bare antenna.

It is to be noted that if the elliptically polarized field is
investigated experimentally with a small movable dipole,
the measurements do not reproduce the polarization el-
lipses but quite different polarization patterns. This is
discussed and the patterns displayed in [8, sec. 4.9], [12, pp.
282, 283].

Also of interest is the rate of heat generation as a
function of location relative to the antenna. The power per
unit volume of tissue dissipated in heat is given by
(1/2)0,E-E* = (1/2)0,(|E,|> +|E,|*), where o, =0y, +
wey is the real effective conductivity of the ambient
medium. The power dissipated per unit volume per Watt
input to the antenna, i.e., o,(E,|* +|E,|*)/V{>G,, where
G, is the input conductance of the antenna, has been
calculated. The distribution of power dissipated as heat is
shown in Fig. 10 in several planes along the lengths of the
antennas with the radial distance from the antenna as the
variable. Since the volume in which most of the power is
dissipated is roughly proportional to the length of the
antenna, the quantity actually plotted for ready compari-
son is ma,(|E,|* +|E,|*)/V§G,, where m =1, 2, 4, and 6 is
the approximate ratio of the length of the antenna to the
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length of the shortest element. The four sets of graphs
indicate that the distribution of dissipated power and,
hence, of heat generated is not particularly sensitive to the
length of the antenna; in all cases, a cylinder surrounding
the dipole absorbs comparable and fairly uniformly dis-
tributed amounts of energy over most of the length of the
antenna. There is a very rapid decrease with radial distance
owing to the high conductivity of the ambient medium.
This emphasizes the desirability of an array of three or four
insulated antennas around the volume to be heated. This
configuration will be investigated in a later paper.

APPENDIX A

Before the integrals in (17)-(19) are evaluated, it is
convenient to express the operations indicated in (18) and
(19) in terms of the unprimed coordinates r, ¢, z locating
the point of observation instead of the primed coordinates
r’,¢', z’ locating the source points on the surface of the
antenna. This is carried out first for (18)

o) VE LR 1R RG]

v (z,2') = 3R] ar,+¢r p¥e + 2=
(A1)
With aR;/ar —(r — reos ¢)/R;, (1/r')(3R,/3¢") =

(rsin¢") /R, /c')z =—(z~— z’)/R’ and, from Fig. 11,
F'=rcos¢’ +<1>s1n¢ ¢’ = — Psing’ + deos¢’, 2’ =2, it fol-
lows that

v¥(z,2") = [9¢'(z,2') /R{9R]]

-[f‘(r'cosq>’— r)+é(r'sing’)—2(z — z’)] (A2)
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Cross section of conductor W1th radius ' = ¢, and unit vectors
7,4 and 7, 6.

Fig. 11.

and
[ vz ) dg =2 [ [aw(z =) /R 2R

J#(r'cose’—r)—2(z—2")]d¢’. (A3)
It is readily verified that the integrand in (A3) is simply
— v{'(z, z’). Hence

[ vvzyay=~2(ig+ig) [vez) do.

(A4)

The integral on the right in (A4) is the same as the integral
in (17).

The integral in (19) is evaluated in a similar manner as
follows:

| #xvw(z2)dy
= .._/_W d’;IX VIV(Z,Z’) d(i)’
=—/j|:¢x)a\l/(ZZ) (¢XZ)8¢E’)ZZ’Z,) d(,'b’

(A3)

With ¢ —-—rsm<1> +¢cos<;l>, it follows that ¢’ X 7=
— 2cos¢’, ¢’ X = — $sing’ + Fcos¢’. Hence

[ ix oy
[P g )

sin ¢’
_21\1_/_(3{;_21 cos<{>’] de’
4 a 2 a 7 ! 4 s ’
=—2[r-52—z-(9—;]f()\b(z,z)cps¢ de’. (A6)

In order to evaluate the integrals in (A4) and (A6), use is
made of the following integral representation of the Bessel
function:

fﬂe"z°°‘¢cosn¢d¢= (—i)'ns,(2). (A7)
0
The integrands in (A4) and (A6) are first transformed with

the following approximate formula for the distance R
defined in (14). Use is made of the distance R, given in
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(24a).
2rc cos¢’ ¢ |'* ,
R{=R1[1———R;i—F ~R,—(rc/R,)cos¢’.
1 1
(A8)
The approximation requires that
R?>c? or R;>4c. (A9)

For ¢ = 0.8 mm, this requires R > 3.2 mm. With (A8)

v(z2) ~ v(z, z’)e”(k“”’/R’)“’S""[l + 25 cos q)’]. (A10)
1

With (A10) and (A7), it follows that
| vz ) d ~2a0(z,2)

[ o (kyer/R )= i(re/R3VJ, (kyer/R))]. (A11)

If the condition for a thin antenna, |k,c|* <1, is now
invoked, the small-argument approximations of the Bessel
functions may be used. Furthermore, (rc/R?%)J,(k,cr/R))
~ k,?’r* /2R3 <1, so that for use in (17) and (18) with
(A4)

[ Wz z)de ~2my(z,2). (A12)
Alternatively, for use in the far zone, where in amplitudes
R,~ R,, r/R,=5sin0®, and with no restriction on k4

/ Tz, 2) d¢ ~ 2m (2, ') Jy(kycsin®). (A13)
The evaluation of (A6) proceeds in a similar manner.

With (A10) and (A7), and the relation cos? ¢’ = (1,/2)(1+
cos2¢’), it follows that

o, ' N s ,d 0

/w(p XvY'(z,z')d¢ ~ ZW[rb—z— —-ZE]
{2z, )i (kyer/Ry) = (re/2R}) Ty (Kyer/R))
+(re/2R?) I (kyer/R)) |} (A14)

With the small-argument approximations permitted by
|k,cl* <1 and the condition ¢?/R? < 1, the contribution
by the term with J,(k,cr/R,) as a factor is negligible.

Hence
_ Ai]
“or

tky 1 ,
r(—l—‘:—R—%)x[J(z,z )} (A15)

o, I ’ ’o A_a_
f7W¢XV¢(z,z)d¢ wc[raz

ik
However, r( —IR—;‘ — R}—lz )xp(z, z'y= dY(z, z")/dr, so that

T oa, I ’ ; A_a__ "i a\P(Z,Z’)
f_w(vatl/(z,z)dgb—wc{raz zar]—————ar .

(A16)
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In the far zone with r/R; ~ r/R,=sin®
fﬂ & X v/(2,2') d¢’ ~ 2mid (k,csin®)

-[f%—f%]xp(z,z’). (A17)

APPENDIX B

The following integrals in (20) and (21) are readily
transformed with integration by parts to obtain:

h : /| (924/(2,2/) ’
thIDkL(h_,Zl)WdZ

=—kL/(;hcoskL(h—z’)—%[xp(z,z’)—gb(z,—z’)]dz’
(B1)

" os (h— ,)az[/(z,z’)d,

[)cos L ) —dz

—fo coskL(h+z’)———a¢(aZ’Z/) dz’
—h z
= —[¥(z, B)+¢(z, = h)=2¢(2,0) cos k i ]
+kahsinkL(h—Z’)[¢(z,z’)+¢(z,—z’)]dz/_
0

(B2)
Note also that

8‘&(2’2,) — _lk____l__ ’
T—(R: Rlz)rgb(z,z) (B3)

— ik
a9(mz) (%—:—ilg)r\p(z, ~2).  (B4)
2

APPENDIX C

In order to determine the electric field between the
surface » = ¢ of the insulator and radial distances » > ¢ that
satisfy the inequalities R? > ¢2, R3 > ¢? which permit the
neglecting of the last terms in (22) and (23), it is possible to
interpolate between the two sets of formulas. For E,, (7, z)
this is straightforward since it decreases continuously es-
sentially as 1/r outward from the surface r =c¢ of the
insulator. For E,,(r, z) the interpolation is complicated by
the fact that E,,(r, z) increases logarithmically from zero
at r = a to r = ¢ and then reaches a maximum just beyond
r = ¢ in Region 4. This behavior is illustrated in Fig. 12 for
a resonant monopole (8,4 = 7/2) at three cross sections.
|E,(r, z)|is calculated from (12) fora < r < ¢ (0.47<r < 0.8
mm) and from (25) for » > 1 mm. Similar graphs in Fig. 13
show |E,(r,0)| for monopoles with five different lengths as
a function of r from a <7 < ¢ (0.7 < r £ 1.0 mm), as calcu-
lated from (12), and for r > 1 mm, as calculated from (25).
Since the conditions R? > ¢? and R3 > ¢? range from
r2> c? to (r? + h*) > ¢? in the range of integration, it is
difficult to assess the importance of the neglected term
when r is near c¢. Calculated points are shown in Figs. 12
and 13 with ¢/r as large as 0.8. Graphs constructed with
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Fig. 12. Magnitude of E,(r,z) in insulator and ambient medium for
resonant monopole (8, k = w/2) at different cross sections z.
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F1g 13. Magnitude of E,(r,0) in insulator and ambient medium for
monopoles of different lengths 4.

them are feasonable, but they may be somewhat in error
near their maxima in the range between r = ¢ and values
that satisfy r2 > 2.

REFERENCES

[1} R. W. P. King, L. C. Shen, and T. T. Wu, “Embedded insulated
antennas for communication and heating,” Electromagnetics, vol. 1,
pp. 51-72, 1981. ‘

[2] - J. W. Strohbehn, E. D. Bowers, J. E. Walsh, and E. B. Douple, “An
invasive microwave antenna for locally-induced hyperthermia for
cancer therapy,” J. Microwave Power, vol. 14, pp. 339-350, 1979.

[31 D. C. deSieyes, E. B. Douple, J. W. Strohbehn, and B. S. Trembly,
“Some . aspects of optimization of an invasive microwave antenna
for local hyperthermia treatment of cancer,” Med. Phys., vol. 8, pp.
174-183, Mar.—-Apr. 1981.

[4] R. W. P. King, K.-M. Lee, S. R. Mishra, and G. S. Smith, “In-
sulated linear antenna: Theory and experiment,” J. Appl. Phys., vol.
45, pp. 1688-1697, Apr. 1974.

[5] R. W. P. King and G. S. Smith, Antennas in Matter. Cambridge,
MA: M.LT. Press, 1981, Ch. 1; also, p. 510, egs. (4.21) and (4.22).

‘{61 K.-M. Lee, T. T. Wu, and R. W. P. King, “Theory of an insulated
antenna in a dissipative medium,” Radio Sci., vol. 12, pp. 195-203,
Mar.—Apr. 1977.

I71 R. W. P. King, Theory of Linear Antennas. Cambridge, MA:

. Harvard University Press, 1956.

[8] R. W. P. King and C. W. Harrison, Jr., Antennas and Waves.
Cambridge, MA: M.LT. Press, 1969. ‘

{9] R. W, P. King, S. R. Mishra, K.-M. Lee, and G. S. Smith, “The
insulated monopole: Admittance and junction effects,” TEEE Trans.
Antennas Propagat., vol. AP-23, pp. 172-177, 1975.

B. S. Trembly, J. W. Strohbehn, and R. W. P. King, “Practical
embedded insulated antenna for hyperthermia,” in Proc. 10th An-
nual Northeast Bio-engrg. Conf., Dartmouth College, Hanover, NH,
March 15-16, 1982, pp. 105-108.

[10]

583

[11] R. W. Hornbeck, Numerical Methods. New York, NY: Quantum
Publishers, 1975.

{121 R. W. P. King and K. lizuka, “Field of a half-wave dipole in a
dissipative medium,” IEEE Trans. Antennas Propagat., vol. AP-11,
275-285, May 1963. :

&

Ronold W. P. King (A’30-SM’43-F53) was born

in Williamstown, MA; on September 19, 1905.

He received the B.A. and M.S. degrees in physics

from the University of Rochester, Rochester, NY,

in 1927 and 1929, respectively, and the Ph.D.
*. degree from the University of Wisconsin, Madi-
son, in 1932, after having done graduate work at
the University of Munich, Germany, and Cornell
University, Ithaca, N.Y. .
He served as a Teaching and Research Assis-
tant at the University of Wisconsin from 1932 to
1934, and as an Instructor and Assistant Professor of Physics at Lafayette
College, Easton, PA, from 1934 to 1937. During the academic year
1937-1938 he was a Guggenheim Fellow in Germany. In 1938 he joined
the faculty of Harvard University, Cambridge, MA, where he advanced to
the rank of Professor in 1946. He was a Gordon McKay Professor of
Applied Physics at Harvard University until 1972, when he became
Professor Emeritus. In 1958 he was again a Guggenheim Fellow.

Dr. King is a fellow of the American Physical Society and the American
Academy of Arts and Sciences, and a member of the American Associa-
tion of University Professors, the American Association of the Advance-
ment of Science, Commission B of the International Union of Radio
Science; Phi Beta Kappa, and Sigma Xi.

L

B. Stuart Trembly received the B.S. degree from
Yale University, New Haven, CT, in 1975, and
the - Ph.D. degree from Dartmouth College,
Hanover, NH, in 1982. He joined the faculty at
the Thayer School of Engineering at Dartmouth
College in 1982, where he is Assistant Professor.

His research interest is the application of elec-
trical engineering to biomedical problems.

John W. Strohbehn (S’57-M’64) received the
B.S.,, M.S,, and Ph.D. degrees in electrical en-
gineering from - Stanford University, Stanford,
CA, in 1958, 1959, and 1964, respectively.

He joined the faculty at the Thayer School of
Engineering, Dartmouth College, Hanover, NH,
in 1963, where he presently holds a position -as
Professor of Engineering. His research efforts
have been in the fields of radiophysics, including
microwave and optical propagation through the
atmosphere, and in biomedical engineering, in-
cluding image processing, tomography, and the use of heat in the cure and
control of cancer. .

Dr. Strohbehn is a Fellow of the Optical Society of America, a member
of the American Association for the Advancement of Science and URSI
Commission II. He was a National Academy Exchange Scientist to the
Soviet Union in 1964, an Associate Editor of the IEEE TRANSACTIONS ON
ANTENNAS AND PROPAGATION from 1969 to 1971, and is presently
Associate Editor of the IEEE TRANSACTIONS ON BIOMEDICAL ENGINEER-
ING. He was a Visiting Research Scientist at Stanford University Medical
School in 1981-1982.




